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Introduction

Learning meaningful representations is crucial to improve generalisation, robustness
and interpretability of machine learning models. Deep generative models such as varia-
tional autoencoders (VAEs) are a promising approach for learning such representations
without supervision [1]. Various losses have been proposed to enforce disentangling
[2, 3, 4, 5], such that the representation factorises into latent units that are sensitive to
changes in single generative factors. We explore the benefits and differences of these
losses by using a fixed architecture and various datasets. We propose a new metric to
provide quantitative insights into the mechanisms at play.

Model

• Parametrised Gaussian posterior qφ(z|x) (encoder) and likelihood pθ(x|z) (de-
coder), with a standard normal prior p(z) ∼ N (z;0, I)

• Trained using reparameterisation trick: z(x) = µ(x) + σ(x)� ε, ε ∼ N (0, I)
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Fig. 1: VAE architecture

VAE’s are trained to estimate the evidence p(x) by minimising its (log) upper bound.
Different losses balance the tightness of the bound and the amount of disentangling:

−Eqφ(z|x) [log pθ(x|z)]︸ ︷︷ ︸
Reconstruction Error

+ αIq[z;x]︸ ︷︷ ︸
i Index-Code MI

+ βKL
[
q(z)‖

∏
j q(zj)

]
︸ ︷︷ ︸
ii Total Correlation

+ γ
∑
j KL

[
q(zj)‖p(zj)

]︸ ︷︷ ︸
iii Dimension-wise KL

(1)

• VAE [1]: β = γ = α = 1 the tightest evidence lower bound for α, β, γ.

• β-VAE1[2]: β = γ = α > 1. Further penalising i , ii and iii , forces

compression of z at the expense of reconstruction. β-VAE2 [3], builds upon
this, by only penalising the sum of i , ii and iii once they deviate from a
capacity, C.

• Factor-VAE [4]: γ = α = 1, β > 1. Further penalising ii forces factorised z.
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Results

Figure 2 illustrates the β trade-off. VAE (Fig.2a) reconstructs nearly perfectly and generates
sharp images from the prior, but does not disentangle factors of variation. β−VAE1 (figure 2b)
has poor reconstruction and generates blurry images, but uses an interpretable and factorised
latent space. The heat maps indicate that the coordinates of the shape are disentangled for the
entire dataset.

(a) VAE (β = 1) (b) β-VAE1 (β = 50)

Fig. 2: Latent traversals from the posterior for dSprites. Top row: original images. Second row:
corresponding reconstructions. Remaining rows: latent traversals sorted by their KL divergence
to the prior. Right column: heat map showing the value of z for different positions of the shape.

Figure 3 shows that VAE uses all latent dimensions without disentangling, while β−VAE only
focuses on a few factor of variations. Factor-VAE is able to only use the correct number of latent
dimensions.

(a) VAE (b) Factor-VAE (c) β-VAE1 (d) β-VAE2

Fig. 3: Dimension-wise KL divergence. The legend is manually set to the true factor of
variation in case of strong qualitative evidence from the latent traversals.

Figure 4 shows that Factor-VAE learns disentangled representations with higher reconstruction
accuracy by only increasing the regularisation of iii , forcing factorised representations .

(a) Factor-VAE dSprites (b) Factor-VAE Chairs (c) Factor-VAE CelebA

Fig. 4: Latent traversals from the prior, dimensions are sorted by their KL and truncated to 5.

Metric

Performance of deep generative models is often measured by qualitative inspection
of reconstructed images and their latent traversals (Fig.4). Following [5, 2, 4] we
use quantitative measures of disentanglement based on the ground truth factors of
variation {vk}Ki=1 and the latent dimensions {zj}Dj=1 to understand and compare

models reliably. Specifically, we propose a metric to quantify axis alignment (Eq.2),
and our modified version of mutual information gap [5] (Eq.3):

AAM[v; z] =
1

K

K∑
k=1

max
(

maxj Ixn
[
zj; vk

]
−
∑D−1
j′=1

Ixn
[
zj; vk

]
(j′) , 0

)
maxj Ixn

[
zj; vk

] (2)

MMIG[v; z] =
1

K

K∑
k=1

Ixn
[
zj; vk

]
(D) − Ixn

[
zj; vk

]
(D−1)

H [vk]−maxk′ I [vk; vk′]
(3)

Where the subscript (D) denotes the Dth order statistic and Ixn
[
zj; vk

]
=

Eq(zj,vk)
[
log
∑
xn q

(
zj|xn

)
p(xn|vk)

]
+ H

[
zj
]

is estimated using em-

pirical distributions and stratified sampling over p(vk) and p(xn).

A small increase from β = 1 to β = 4 increases AAM (Table 1) due to the regu-
larisation of ii . A large increase from β = 4 to β = 50 decreases AAM due to

iii which penalises
(
E[q(zj)]− E[p(zj)]

)2
. As a result, the model is forced to use

multiple dimensions to encode a single factor of variation to obtain a smaller variance
of dimension-wise KL. FactorVAE only increases the regularisation of ii , enabling
it to have both a large likelihood and AAM.

Conclusion

A variety of VAE objectives were explored under a fixed model architecture. In-
creased regularisation of terms i , ii and iii for β-VAE encouraged greater disen-
tangled representations of the generative factors compared to that of standard VAE
but at the cost of reconstruction accuracy. We confirm the Factor-VAE postulate
that total correlation ii is responsible for independence in the latent distribution
and that penalising all three terms reduces the amount of data information stored
in the latent representation. Indeed for Factor-VAE, we achieved both higher levels
of disentanglement and higher reconstruction accuracy compared to β-VAE. Our
proposed metric, AAM provides a quantitative evaluation of axis alignment between
the latent representation and the generative factors of the data.


