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Introduction
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Figure 1: Overview of a black-box ASR system

• Cloud-based ASR solutions are becoming the norm

• Increasing complexity of ASR

• Fewer companies can afford to build their own systems

• The internal states of black-box systems are inaccessible

• Word-based confidence scores are an indication of reliability
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Speech Recognition and Confidence Scores
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Figure 2: One-best word sequence with a word-level confidence score

How do we typically obtain confidence scores?

• Word posterior probability - known to be overly confident [1]

• Decision tree mapping requires calibration

• Can we do better?
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Deep Learning for Confidence Estimation
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Figure 3: Bi-directional RNN for confidence prediction on one-best sequences

• Bi-directional RNN to predict if each word is correct

• What kind of features are available?

• What if we have access to complicated structures?
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Features
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Figure 4: Detailed look at ASR features

Can we extract these features?

• Sub-word level information

• Competing hypotheses

• Lattice features
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Sub-word Unit Encoder
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Figure 5: Word confidence classifier
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Figure 6: Sub-word feature extractor

• Given a lexicon, we can extract grapheme features

• fox → { f, o, x }
• Convert a variable length grapheme sequence into a fixed size

• Deep learning to aggregate features
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Alternative Hypothesis Representations

An intermediate step in generating a one-best sequence is the generation

of lattices.
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Figure 7: Lattice

From lattices, we can obtain confusion networks by clustering arcs.
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Figure 8: Confusion network

How do we handle non-sequential models?
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Lattice Recurrent Neural Networks

A generalisation of bi-directional RNNs to handle multiple incoming arcs:
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Figure 9: Red nodes have multiple incoming arcs, while

blue nodes only have one.

Attention to learn relative importance [2]:
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Figure 10: Arc merging mechanism

as implemented by LatticeRNN [3]
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Extracting Lattice Features
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Figure 11: Arc matching

• Match arcs to the corresponding lattice arc

• What kind of features could we extract?

• Acoustic and Language model scores

• Lattice embeddings

• Hypothesis density
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Experiments (One-best)

Large gains are obtained by introducing additional information.

Features NCE AUC

word words 0.0358 0.7496

+duration 0.0541 0.7670

+ posteriors 0.2765 0.9033

+ mapping 0.2911 0.9121

sub-word + embedding 0.2936 0.9127

+ duration 0.2944 0.9129

+encoder 0.2978 0.9139

Table 1: Impact of word and sub-word features. IARPA BABEL Georgian (25 hours).
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Experiments (Confusion Networks)

Significant gains from alternative hypotheses and basic lattice features.

Features NCE AUC

word (all) 0.2911 0.9121

+confusions 0.2934 0.9201

+sub-word 0.2998 0.9228

+lattice 0.3004 0.9231

Table 2: Impact of competing hypothesis information. IARPA BABEL Georgian (25 hours).
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Conclusion

• Prevalence of black-box ASR

• Limited ability to assess transcription reliability

• Confidence estimates can be improved by providing available

information

• Deep learning approach for incorporating sub-word features

• Deep learning framework for introducing lattice features
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Thank you

Figure 12: Source code: https://github.com/alecokas/BiLatticeRNN-Confidence
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